Resource operators for λ-calculus
نویسندگان
چکیده
We present a simple term calculus with an explicit control of erasure and duplication of substitutions, enjoying a sound and complete correspondence with the intuitionistic fragment of Linear Logic’s proof-nets. We show the operational behaviour of the calculus and some of its fundamental properties such as confluence, preservation of strong normalisation, strong normalisation of simply-typed terms, step by step simulation of β-reduction and full composition.
منابع مشابه
Resource control and intersection types: an intrinsic connection
In this paper we investigate the λ-calculus, a λ-calculus enriched with resource control. Explicit control of resources is enabled by the presence of erasure and duplication operators, which correspond to thinning and contraction rules in the type assignment system. We introduce directly the class of λ-terms and we provide a new treatment of substitution by its decomposition into atomic steps. ...
متن کاملCertain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators
The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...
متن کاملOn certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملThe Resource Lambda Calculus Is Short-Sighted in Its Relational Model
Relational semantics is one of the simplest and categorically most natural semantics of Linear Logic. The co-Kleisli category MRel associated with its multiset exponential comonad contains a fully abstract model of the untyped λ-calculus. That particular object of MRel is also a model of the resource λ-calculus, deriving from Ehrhard and Regnier’s differential extension of Linear Logic and rela...
متن کاملKrivine Machine and Taylor Expansion in a Non-uniform Setting
The Krivine machine is an abstract machine implementing the linear head reduction of λ -calculus. Ehrhard and Regnier gave a resource sensitive version returning the annotated form of a λ -term accounting for the resources used by the linear head reduction. These annotations take the form of terms in the resource λ -calculus. We generalize this resource-driven Krivine machine to the case of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006